UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

PROGRAMAS DE ESTUDIO SÉPTIMO/OCTAVO/NOVENO SEMESTRE

Asignatura	Ciclo	Área	Departamento
METALURGIA DE	TERMINAL Y DE	INGENIERÍA	INGENIERÍA METALÚRGICA
HIERROS COLADOS	PRE-	METALÚRGICA	
	ESPECIALIZACIÓN		

HORAS/SEMANA

OPTATIVA CLAVE 0186 TEORIA 3 h PRACTICA 2 h CREDITOS 8	OPTATIVA	CLAVE 0186	TEORÍA 3 h	PRÁCTICA 2 h	CRÉDITOS 8
--	----------	-------------------	------------	--------------	------------

Tipo de asignatura:	TEÓRICO-PRÁCTICA	
Modalidad de la asignatura:	CURSO	

ASIGNATURA PRECEDENTE: Ninguna. ASIGNATURA SUBSECUENTE: Ninguna.

OBJETIVO(S):

- Valorar la importancia de los hierros grises y nodulares en la industria de la fundición
- Utilizar los diagramas Fe-Carbono estable y metaestable para predecir la formación de hierros grises (nodulares, hierros blancos y hierros atruchados o con carburos.
- Interpretar el efecto que tienen las principales variables metalúrgicas en la microestructura y propiedades de los hierros grises y nodulares.
- Controlar las etapas de fabricación de hierros colados (grises y nodulares) para obtener componentes que cumplan con los requisitos de calidad definidos por normas nacionales y/o internacionales.
- Aplicar los conocimientos de solidificación al diseño de modelos para fundición y control de mezclas de moldeo en verde.
- Diseñar y dimensionar sistemas de alimentación y colada para piezas coladas en molde de arena en verde.
- Adquirir los conocimientos necesarios para aplicar tratamientos térmicos a los hierros colados

UNIDADES TEMÁTICAS

NÚMERO DE	UNIDAD
HORAS POR	
UNIDAD	
3T—1P	1. INTRODUCCIÓN
4 h.	1.1. Importancia de los hierros colados: mercado y perspectivas
	1.2. Clasificación
	1.3. Intervalos típicos de composición química
6T—4P	2. DIAGRAMA METAESTABLE Fe-Fe ₃ C Y DIAGRAMA ESTABLE Fe-C-Si
10 h.	2.1. Diagrama Fe-Fe ₃ C y predicción de estructuras (hierros blancos)
	2.2. Diagrama Fe-G y predicción de estructuras (hierros grises,

	vermiculares y nodulares)
	2.3. Predicción de estructuras entre el diagrama Fe-Fe₃C y Fe-G
	2.4. Relación de los diagramas de fases Fe-Fe ₃ C, Fe-G y CEq, sobre la implementación de técnicas de fusión.
	2.5. Diagrama Fe-C-Si. Carbono equivalente (CEq)s
6T—4P	3. VARIABLES QUE AFECTAN LA FORMACIÓN DE HIERROS GRISES Y
10 h.	NODULARES.
	3.1. Balance C-Si.
	3.2. Velocidad de enfriamiento.
	3.3. Elementos de aleación.
	3.3.1. Efecto de los elementos de aleación sobre la
	microesstructura.
6T—4P	4. CLASES DE HIERROS COLADOS
10 h.	4.1. Clasificación, propiedades y aplicaciones de hierros grises
10	4.2. Clasificación, propiedades y aplicaciones de hierros nodulares
	4.3. Clasificación, propiedades y aplicaciones de hierros maleables,
	blancos y vermiculares
9T—6P	5. MANUFACTURA DE PIEZAS DE HIERROS COLADOS (GRISES,
15 h.	VERMICULARES Y NODULARES)
10	5.1. Hornos de fusión (induccion y cubilote).
	5.2. Refractarios
	5.3. Métodos de inoculación y tipos de inoculantes.
	5.4. Métodos de nodularización y tipos de nodulizantes.
	5.5. Métodos de desulfuración.
	5.6. Métodos de control químico y microestructural.
	1
7T—3P	6. PROCESOS DE FABRICACIÓN: MOLDEO EN VERDE, FUNDICIÓN
10 h.	CENTRÍFUGA, LOST FOAM.
	6.1. Mezclas de arenas para moldeo en verde. Control y propiedades,
	defectos.
	6.2. Fabricacion de corazones.
	6.3. Fundición centrífuga. Principios generales, control del proceso,
	ventajas y desventajas, defectos.
	6.4. Lost foam. Generalidades, control del proceso, ventajas y desventajas, defectos.
5T—6P	7. METODOS DE CÁLCULO DE DISEÑO DE SISTEMAS DE ALIMENTACIÓN
12 h.	Y SISTEMAS DE COLADA PARA COLADA HORIZONTAL.
12	7.1. Diseño de sitemas de alimentación .
	7.2. Diseño de sistemas de colada.
	7.3. Casos-ejemplo
6T—4P	8. TRATAMIENTOS TÉRMICOS APLICADOS A HIERROS COLADOS.
10 h.	8.1. Recocido, normalizados, temple y revenido.
	8.2. Tratamientos isotérmicos.
	8.3. Otros tratamientos.
	I

SUMA: 48T - 32P

BIBLIOGRAFÍA BÁSICA

- 1. AFS, Iron Casting Handbook, Third Edition, USA, American Foundryman Society, 1982.
- 2. Ductile Iron Handbook, USA, American Foundryman Society, 1992.
- 3. Karsay, S. I., Ductile Iron Production Practice, Canada, AFS, 1996.
- 4. Karsay, S. I., The Foundryman's Guide to Feeding and Running Gray, CG and SG Iron Casting, USA, AFS, 1995.
- 5. Introduction to Gray Cast Iron Processing, AFS 1999.

- 6. Iron Casting Engineering Handbook, AFS 2000.
- 7. Introduction to Gray Iron Production Practice, AFS' Cast Iron Division (Gray Iron Research Committee 5-H) 2000.
- 8. Moulding Methods and Materials, AFS.
- 9. Manual de arenas para fundición, AFS.
- 10. Tratado practico de moldeo y fundición, Oscar Schütze Alonso.

BIBLIOGRAFÍA COMPLEMENTARIA

- 1. ASTM, Annual Book of ASTM Standards, USA, 1997, ISBN 0803123612.
- 2. ASM, Metals Handbook, V.1, V.5, V.9, American Society for Metals, USA, 1990.
- 3. AFS, Ductile Iron Microstructure Rating Chart, USA, 1995
- 4. AFS, Ductile Iron Molten Metal Processing, USA, 1974.
- 5. Modern Casting, USA. (revista)
- 6. Foundry Trade Journal, USA. (revista)
- 7. AFS Transaction (revista), USA. (revista)
- 8. Castings, John Campbell.
- 9. Foundry Technology, Peter Beeley

SUGERENCIAS DIDÁCTICAS

Cátedra frente a grupo, presentación de temas específicos por los alumnos, trabajos de investigación, visita a plantas de fundición de hierro colado, preguntas directas en clase, ejercicios en clase, tareas a casa para reforzar conocimientos.

FORMA DE EVALUAR

La calificación final será el promedio de al menos tres exámenes parciales, más la participación en clase, la entrega de tareas, la exposición de temas frente a grupo y la calificación de las prácticas de laboratorio.

PERFIL PROFESIOGRÁFICO DE QUIENES PUEDEN IMPARTIR LA ASIGNATURA

El profesor que imparta esta asignatura deberá tener una amplia experiencia en los diferentes tópicos de la metalurgia de los hierros colados: análisis metalográfico, producción, tratamiento del hierro líquido, diseño de sistemas de colada y alimentación, control de arenas de moldeo para piezas de hierro gris, etc. Deberá demostrar al menos 5 años de experiencia en el área, deberá tener la formación de Ingeniero Químico Metalúrgico o Ingeniero Metalúrgico, preferentemente con maestría o experiencia equivalente.