UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

PROGRAMAS DE ESTUDIO SÉPTIMO SEMESTRE

Asignatura SÍNTESIS DE MATERIALES	Ciclo TERMINALES Y DE PREESPECIALIZACIÓN	Área QUÍMICA	Departamento QUÍMICA INORGÁNICA Y NUCLEAR
WIII BIGIIBE	TREEST DOMINICION		NOODDING

HORAS/SEMANA/SEMESTRE

OPTATIVA	Clave 0068	TEORÍA 3h/48h	PRÁCTICA 4h/64h	CRÉDITOS 10

Tipo de asignatura:	TEÓRICA-PRÁCTICA
Modalidad de la asignatura:	CURSO

ASIGNATURA PRECEDENTE: Ninguna ASIGNATURA SUBSECUENTE: Ninguna

OBJETIVO(S):

El estudiante conocerá las contribuciones destacadas de los químicos en las síntesis de los materiales de importancia científica y tecnológica dentro de la denominada "Ciencia de los Materiales". Adquirirá los conocimientos químicos de los materiales conocidos, nuevos y novedosos. Desarrollará habilidades de predicción, diseño y desarrollo de diferente tipo de materiales con propiedades: químicas, físicas y mecánicas.

UNIDADES TEMÁTICAS

NÚMERO DE	UNIDAD		
HORAS POR			
UNIDAD			
6T-8L	1. Introducción.		
14	1.1. Evolución histórica de los materiales.		
	1.2. La denominada "Ciencia de los Materiales"		
	1.3. Trascendencia de la Ciencia Química en los Materiales.		
6T-8L	2. Clasificación y Propiedades de los Materiales		
14	2.1. Clasificaciones diversas de los materiales.		
	2.2. Propiedades Químicas.		
	2.3. Propiedades Físicas.		
	2.4. Propiedades Mecánicas.		
6T-8L	3. Materiales Poliméricos.		
14	3.1. Polímeros estructurales.		
	3.2. Polímeros funcionales.		
6T-8L	4. Materiales Cerámicos.		
14	4.1. Cerámicas de alta temperatura (v.g. Nitruros de silicio)		
	4.2. Electrocerámicas (materiales ferroeléctricos y ferroelásticos)		
	4.3. Cerámicas Superconductoras (cupratos)		
	4.4. Cerámicas Vítreas.		
6T-8L	5. Materiales Electrónicos.		
14	5.1. Semiconductores (materiales III-IV, III-V, II-VI		
	5.2. Superconductores (fases de Chevreul, fullerenos)		
	5.3. Moléculas (cristales líquidos, otros).		

6T-8L	6. Materiales Magnéticos.	
14	6.1. Aleaciones (Ti-Co)	
	6.2. Imanes potentes (Ln-Ni ₅)	
	6.3. Metales-vidrios	
	6.4. Otros (Nd-Fe-B)	
6T-8L	7. Catalizadores y Adsorbentes	
14	7.1. Sólidos inorgánicos de poros controlados.	
	7.2. Zeolitas.	
6T-8L	8. Compositos	
14	8.1. Materiales Superduros (diamante, B4C, etc).	
	8.2. Películas de diamante.	
	8.3. Sensores (microbiosensores)	
	8.4. Cementos nuevos	
	8.5. Híbridos nuevos.	
	8.6. Nanocompuestos.	

SUMA: 48T + 64L = 112 h

BIBLIOGRAFÍA BÁSICA

- 1. Askeland, R. D. La Ciencia de Ingeniería de los Materiales. International Thomson, (1998).
- 2. Rao, C. N. R. New Directions in Solid State Chemistry. Cambridge, New York. Cambridge University Press, 2a. Edition, (1977).
- 3. Rao, C. N. R. Chemistry of Advanced Materials A "Chemistry for the 21st Century", Oxford, Blackwell Scientific Publications, (2000).
- 4. Anderson, J. C., Leaver, K. D., Alexander, J. M., Rawlings, R. D. Ciencia de los Materiales. Ed. Limusa. 1^a. Ed. (1978).
- 5. Dann, S. E. Reactions and Characterization of Solids. London, Royal Society of Chemistry, 2000.
- 6. Elliott, S. The Physics and Chemistry of Solids. New York, J. Wiley, 1998.
- 7. Chuan-Yu W., Wei G. Eds. Particulate Materials, RSC Publication, 2012.
- 8. Schubert, U., Husing, N. Synthesis of Inorganic Materials. Weinheim, Wiley-VCH, 2012.

BIBLIOGRAFÍA COMPLEMENTARIA

- 1. Interrante, L. V. y Hampten, M. J. Chemistry of Advanced Materials. Wiley-VCH. New York, 1998.
- 2. Callister, W. Materials Science and Engineering. An introduction. 3ed. John Wiley, New York, 1994.
- 3. Ruoff, A. L. Introduction to Material Science. Prentice-Hall. London, 1972.
- 4. Schlenker, B. R. Introduction to material science. John Wiley, New York, 1974.
- 5. Bruce, D. W. y O' Hare, D. Inorganic Materials. John Wiley, New York, 1997.

SUGERENCIAS DIDÁCTICAS

Se presentarán exposiciones acompañadas de materiales gráficos referentes al tema. Se desarrollarán mesas de discusión a partir de un paquete de lecturas de la materia. Seminarios por parte de los alumnos.

FORMA DE EVALUAR

40% corresponde al laboratorio, participación del alumno en seminarios, mesas de discusión y un examen final.

PERFIL PROFESIOGRÁFICO DE QUIENES PUEDEN IMPARTIR LA ASIGNATURA Este curso puede ser impartido, por un profesor de Química del Estado Sólido o Química de Materiales.